Average of
the set X = {x1, x2, x3, … , xn} is A = (x1 + x2 + x3 +…..+ xn)/n.
Min(X) <
A < Max(X).
k * (
each element of X )
=> k*A. (Each element of
X)/k -> A/k.
Each
element of X ± K = A
± K.
Let A be the
average of x1, x2, x3, ……, xn, y1, y2, y3, ……, yn. And A lie between {x1,
x2, x3, ……, xn} and {, y1, y2, y3, ……, yn}
then,
(A-x1)*(A-x2)*(A-x3)* ……*(A-xn) = (A-y1)*(A-y2)*(A-y3)*……*(A-yn).
No comments:
Post a Comment