e^x = 1 + x/1! + (x^2)/2! + (x^3)/3! + …
to infinity
log(1+x) = x – x^2/2 + (x^3)/3 - (x^4)/4 + … to infinity
Sum(n) = [n*(n+1)]/2
Sum(n^2) = [n*(n+1)*(2n+1)]/6
Sum(n^3) = [{n*(n+1)}/2]^2
Sum(odd numbers) = Sum(2*n - 1) = n^2
Sum(even numbers) = Sum(2*n) = n*(n+1)
log(1+x) = x – x^2/2 + (x^3)/3 - (x^4)/4 + … to infinity
Sum(n) = [n*(n+1)]/2
Sum(n^2) = [n*(n+1)*(2n+1)]/6
Sum(n^3) = [{n*(n+1)}/2]^2
Sum(odd numbers) = Sum(2*n - 1) = n^2
Sum(even numbers) = Sum(2*n) = n*(n+1)
Last
digit of (xyz) ^n:-
Step 1: n/4 = a*Q + r
Step 2: if r = 0, last digit = 1
(if z is odd) / last digit = 6 (if z is even)
if r = 1, last digit = z.
if r = 2, last digit = last
digit of z^2
if r = 3, last digit = last
digit of z^3
If (x + y) =k, max(x*y) =
(k^2)/4
min(x + y) = 2*[k^(1/2)]
`
Last n-th digit of (a*b*c*…) = Remainder[(a*b*c*….)/10^n] = (a*b*c*…)
mod 10^n.
Square of any number can be written in
the form (3*n) or (3*n + 1). Also, square of any natural number can be written in the form (4*n) or (4*n
+ 1).
Last digit of square of natural
numbers = 0, 1, 4, 5, 6, 9.
And the second last digit is always even except when last digit is 6,
and, it is 2 when the last digit is 5.
No comments:
Post a Comment